Three-dimensional quantification of capillary networks in healthy and cancerous tissues of two mice

A key issue in developing strategies against diseases such as cancer is the analysis of the vessel tree in comparison to the healthy one. In the search for parameters that might be characteristic for tumor capillaries we study the vascularization in mice for cancerous and healthy tissues using synchrotron radiation-based micro computed tomography in absorption and phase contrast modes. Our investigations are based on absorption tomograms of casted healthy and cancerous tissues as well as a phase tomogram of a fixated tumor.

The head anatomy of Epiophlebia superstes

The relic dragonfly family Epiophlebiidae is recovered as sistergroup of Anisoptera (= Epiprocta) by most molecular and morphological analyses. However, in a recent study it was placed within Anisoptera as sister group of Cordulegastridae. In another study, several affinities to Zygoptera in the morphology of the ovipositor and the egg-laying behaviour were pointed out. Here, we present a detailed study of the outer, as well as the inner, head morphology of Epiophlebia superstes.

The non-hierarchical, non-uniformly branching topology of a leuconoid sponge aquiferous system revealed by 3D reconstruction and morphometrics using corrosion casting and X-ray microtomography

As sessile filter feeders, sponges rely on a highly efficient fluid transport system. Their physiology depends on efficient water exchange, which is performed by the aquiferous system. This prominent poriferan anatomical character represents a dense network of incurrent and excurrent canals on which we lack detailed 3D models. To overcome this, we investigated the complex leucon-type architecture in the demosponge Tethya wilhelma using corrosion casting, microtomography, and 3D reconstructions.

The thorax musculature of Anisoptera (Insecta: Odonata) nymphs and its evolutionary relevance

Among the winged insects (Pterygota) the Odonata (dragon- and damselflies) are special for several reasons. They are strictly aerial predators showing remarkable flight abilities and their thorax morphology differs significantly from that of other Pterygota in terms of the arrangement and number of muscles. Even within one individual the musculature is significantly different between the nymphal and adult stage.

Bringing dicynodonts back to life: paleobiology and anatomy of a new emydopoid genus from the Upper Permian of Mozambique

Dicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia) from northern Mozambique: Niassodon mfumukasi gen. et sp. nov.

Synchrotron radiation-based techniques applied to the study of dinosaur fossils from the collection of the museum of Lourinhã

The Museum of Lourinhã exhibits one of the most diverse and best-preserved collections of dinosaur fossils in Portugal. Several fossilized dinosaur eggshell fragments and embryonic vertebrae have been studied by Synchrotron Radiation-based Micro-Computed Tomography (SRμCT) at the beamlines operated by the Helmholtz-Zentrum Geesthacht at the storage ring DORIS III at the Deutsches Elektronen–Synchrotron DESY, Hamburg, Germany. We have obtained high-resolution three-dimensional tomographic datasets using a non-destructive procedure.

Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal

The non-avian saurischians that have associated eggshells and embryos are represented only by the sauropodomorph Massospondylus and Coelurosauria (derived theropods), thus missing the basal theropod representatives. We report a dinosaur clutch containing several crushed eggs and embryonic material ascribed to the megalosaurid theropod Torvosaurus. It represents the first associated eggshells and embryos of megalosauroids, thus filling an important phylogenetic gap between two distantly related groups of saurischians. These fossils represent the only unequivocal basal theropod embryos found to date. The assemblage was found in early Tithonian fluvial overbank deposits of the Lourinhã Formation in West Portugal. The morphological, microstructural and chemical characterization results of the eggshell fragments indicate very mild diagenesis. Furthermore, these fossils allow unambiguous association of basal theropod osteology with a specific and unique new eggshell morphology.

The head of Merope tuber (Meropeidae) and the phylogeny of Mecoptera (Hexapoda)

External and internal features of the head of adults of Merope tuber were examined and described in detail. The results were compared to conditions found in other members of Mecoptera and other antliophoran lineages. A list of characters of different body parts and life stages is presented. The parsimony analysis and a recent evaluation of thoracic features suggest a basal placement of Merope within monophyletic Pistillifera. The monophyly of Mecoptera was not supported by our data set.

An updated phylogeny of Anisoptera including formal convergence analysis of morphological characters

Family interrelationships among Anisoptera (dragonflies) are unresolved. Molecular markers applied thus far have not been particularly useful for resolving relationships at the family level. Previous morphological studies have depended heavily on characters of wing venation and articulation which are believed to display considerable degrees of homoplasy due to adaptations to different flight modes. Here, we present a comprehensive anatomical dataset of the head morphology of Anisoptera focusing on muscle organization and endoskeletal features covering nearly all families.


Subscribe to News